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Unsteady processes involving the propagation of perturbations in two-dimensional boundary layers are analysed in the strong 
interaction regime. A system of characteristics and subcharacteristics corresponding to wave processes in gas dynamics as well 
as convection and diffusion processes is determined. A system of equations describing the processes of weak interactions between 
the flow in a laminar Ixmndary layer and an external supersonic flow near a cooled surface is analysed. For a flow described by 
the self-similar system of equations for the boundary layer, the velocity of propagation of perturbations as a function of a 
temperature factor is d~termined from a numerical solution. Copyright © 1996 Elsevier Science Ltd. 

The propagation of perturbations in a boundary layer is related to convection and diffusion processes 
[1]. It has been shown by analysing the system of equations for a three-dimensional boundary layer [1] 
that normal lines to the surface placed in the flow serve as the characteristics of this system. The form 
of these characteristics and the conditions satisfied on them correspond to the propagation of 
perturbations with infinite velocity in a direction normal to the surface. These effects are related to 
diffusion processes, which occur in one direction in the system of equations for a boundary layer, which 
is degenerate relative to the original Navier--Stokes equations, and are determined by higher derivatives 
in the boundary-value problem. To describe the propagation of perturbations related to convection it 
is necessary to analyse the characteristics of the system of boundary-layer equations without higher 
derivatives (subcharacteristies). The complete system of characteristics and subcharacteristics enables 
qualitative conditions to be laid down for the boundary-value problem to be well-posed and enables 
the zone of dependence and influence to be determined. Next, the equations of a two-dimensional 
unsteady boundary layer were analysed and the system of characteristics and subcharacteristics was 
determined in [2]. The study of characteristics and subcharacteristics was determined in [2]. The study 
of characteristics and subcharacteristics in unsteady boundary layers containing cuspidal points led to 
the conclusion thai! discontinuous solutions may develop with time [3]. 

At the same time, because of the no-slip conditions on the surface and the presence of a domain of 
subsonic flow it is possible for perturbations to propagate due to wave processes. Experimental results 
concerning the effects of upstream propagation of perturbations in supersonic boundary layers are 
presented, for example, in [4]. Classical boundary-layer theory does not enable such processes to be 
described because it is assumed that the pressure distribution is known in advance. A mathematical 
model of linear processes of the interaction of a viscous flow in a boundary layer with an external inviscid 
flow was proposed :in [5]. The effects of strong local viscous-inviscid interaction turn out to be significant 
in the case of upstream propagation of perturbations. When these effects are taken into account, it 
becomes possible to describe local flows with separation [6-8], as well as flows in domains with large 
local gradients [9-11]. 

An analysis of the propagation of perturbations in a three-dimensional boundary layer under steady 
interaction conditions enable the corresponding subcharacteristic surfaces [12] separating the domains 
of subcritical (subsonic on the average) and supercritical (supersonic on the average) flow to be 
determined in a hypersonic boundary layer near a triangular airfoil. The definition of sub- and super- 
critical flows is given in [13] for flows in which perturbations propagate upstream over distances 
comparable with the boundary-layer thickness or significantly exceeding the boundary-layer thickness. 

Below we analyse unsteady flows in a laminar boundary layer under strong interaction conditions. 
Unsteady perturbations giving rise to viscous-inviscid interaction processes can be caused by time 
variations of the base pressure, by a shock wave of variable intensity hitting the boundary layer, etc. 
As has been shown in the study of hypersonic flows [14], upstream propagation over the whole surface 
up to the leading edge is characteristic for steady conditions of strong interactions. It is natural to assume 
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that similar effects will also appear in unsteady flows, changing both the local and integral values of 
surface friction, heat flux and pressure. Modelling processes of this kind are therefore important for 
solving problems in practical aerodynamics. 

1. We consider the flow past a flat surface (plate or wedge) at zero angle of attack to a free hypersonic 
stream of viscous heat-conducting gas. It is assumed that the strong interaction regime [15] occurs, for 
which the following relations are characteristic 

M~ ---) oo, M~x --> oo (1.1) 

where M.  is the Mach number of the free stream, and x is the dimensionless thickness of a laminar 
boundary layer ('c = O(Re~l/2)). For Cartesian coordinates along the plate surface and normal to the 
surface, time, velocity vector components, density, pressure, total enthalpy, and dynamic coefficient of 
viscosity we introduce the notation/x,/y,/z, It/u., u**u, u_~, p,p, p**u~/~, u2.j-I/2, liolX. The  parameter 
I is either the characteristic length of the plate or the distance from the leading edge to the base of the 
wedge. The infinity subscript denotes the dimensional parameters of the inviscid flow over the boundary 
layer, while the zero subscript denotes the dimensional value of the dynamic coefficient of viscosity 
computed at the stagnation temperature. It is assumed that the Reynolds number Re0 = p**u**//la0 is 
large, but does not exceed the critical value at which the laminar regime can become turbulent. The 
Reynolds number is known to increase significantly as the Mach number increases [16]. 

In accordance with the theory of strong hypersonic interactions, the domain of perturbed flow 
near the surface placed in the flow is divided into two subdomains: 1--inviscid flow, 2--viscous flow 
(Fig. 1). 

The following asymptotic representations of the stream functions and coordinates correspond to 
domain 1 

x = x I,  y = ' C y  I, t = t I 

u ( x , y , t , ~ ) = i +  . . . .  v ( x , y , t , t ) = t v l ( x i , Y t , t l ) + . . .  

p ( x , t , y , + ) = X 2 p l ( x l , Y l , t l ) +  . . . .  p ( x , y , t , c ; ) = p l ( x l , Y l , t l ) + . . .  (1.2) 

Substituting expansions (1.2) into the system of Navier-Stokes equations and taking the limit (1.1) 
we obtain a system of equations of the form 

ap~ c~p~+c~p ,v l  = 0  
c3t I c3x t o~yl 

Or1 Or, Ovl 1 aPl 
+ - - + v  I + - 0 ,  

~tt Oxt OYt Pt OYo 
±/,./ ±(,./=o 

Lp, J 

Fig. 1. 
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with the following boundary conditions on the shock wave 

(T+I) iv+ l )  v 2 
Yl =gl(x l , f i ) ,  Pl = - -  Pl = (v-  O' 2 ' (V + l) t, Ox, bt~ ) 

and on the outer boundary of the boundary layer 

2 (~a~ +Oal} 
yl =~l(xl , t l ) ,  Vl = (7+l----Sk~x-- 7 ~t I 

For the analysis below it is necessary to obtain a relation between the thickness 5a of the boundary 
layer or the vertical velocity ah(xa, 81, q) and the pressure perturbation pl(xl ,  q) .  Below we use the 
approximate relation 

Pl = (T + 1) v 2 / 2 (1.3) 

which is an extensiion of the tangent wedge formula to the unsteady case. 
The following ~¢mptotic expansions and representations of coordinates are characteristic for domain 2 

x = x I , Y ----- ~Yl ,  t = t I 

u( x, y,t ,  x) = u2 ( x I, yl ,fi )+ .... 

p(x,  y,t,'¢) = x2 p2(xj ,q )+ .... 

H(x,  y, t, x) = H 2 (x 1 , Yl, tl )+'" 

v (x ,y , t ,X)  = Xv2(x I ,Yl ,fi )+'" 

p(x,y,t , 'c) = "~292 (x t ,Yl ,tt )+"" 

(1.4) 

Substituting expansions (1.4) into the system of Navier--Stokes equations and taking the limit (1.1), 
we obtain a system of equations for an unsteady boundary layer. The replacement of variables 

r 2 : 0  q-'A x_,/4 'i' DE 
X = x l, T = fi, y =  i Rdyl, u 2 

L q ' - o J  ' Jo :~ 

P2 = x l  ~P,  P2 = Xl ~R,  Co = Px=o, G = H 2, A = G - U 2 

reduces the corresponding boundary-value problem to the form 

x O U +  x ( u 3 U  OF OU) F OU (7 -1)  A= P o2U 
0T ~, 0X 0X ~ 4 0Y +~ 4 7 Co 3y2 

x~_G.G+x(uOG OF 8 G )  F 3 G = x A ( 7 - 1 )  8P~---P' 02G (1.5) 
8T OX OX ~ 4 0Y yP dT C O 

2X 0P 
P bx' L "t J 0 v =  2 LS-, k~ ~)J 

U=F=:O,  G = g  w, Y=0; U = G = I ,  Y = ~  

t ' ( l ,  T)= ~T) 

where it is assumed that the dynamic coefficient of viscosity depends linearly on temperature, the Prandtl 
number is equal to one, and the last boundary condition corresponds to the given time dependence of 
the base pressure drop. 

We will first determine the characteristic (subcharacteristic) surfaces fl(X, T) related to the function 
P(X, T), which is unknown in advance and can be determined in the course of solving the problem. 
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After making the change of variables 

X,Y,T-->~,Y.T (1.6) 

the boundary-value problem (1.5) takes the form 

b(s~Uo~ ~)¥ ~Uoy +CA-~PJ=B, b(s~G ~OF ~G~y 2CAa~P~ DO£,~)= (1.7) 

Here 

an(aa)- '  b x aa _ %~u F au (V-~)a S:U+a, a=.~,- -~j  , : -~- '  / ~ : [ ' ~ + 4 "  "~"~ 4"/ 

+ 2XCA x C=(Y-I)2¥P' D=L~-Y"f+4" ~'T ~-TI 

aTJ 

The interaction condition, relating the pressure distribution with the boundary-layer displacement 
thickness, can be transformed as follows: 

~a = ( = (2p)~ - , - ~  - 3 ~ - x  ~ )  b(t+a)~  cLe (~t 4 ~ )  (1.8) 

The derivative on the left-hand side of (1.8) can be expressed in accordance with the above expression 
for the displacement thickness 

OA C o ~ ~3 ~U 1 AdY] 

To compute the derivatives with respect to D in the integrands one can use (1.5), from which it follows that 

OF S ~)P rt A r B OG 1 OF ~G D 2CAaT 3P 
Ota 7 p ~-~ + J -zrdr + Sl 7 d r '  ~ = -  - -  ~ - - +  - -  o S o ~ S ~ 3Y S S 

After some reduction using relations (1.7)-(1.8), we obtain the expression 

bN = oP = PM 
Of'Z 

" 1 "-~ A 2 2 

M=i BdY-S2 i -~dY-!  ~dY-I -~-Co)  c, N= i --~-dY ( , - 1 ,  i adY 

(1.9) 

The condition defining the subcharacteristic surface has the form 

(7-1)  i ( G - U  2)2 _U 2 
2 ~ - ; : 7  eY-~o ~a ),tY--o 

and is an extension of Pearson's integral [17] 

(7-1) ~ (G-U 2)z 
L= 2 o U2 

dY- 7 (G- U2)dy 
o 

(1.10) 

(1.11) 
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the sign of which depends on the mean value of the Mach number in the boundary layer. A negative 
Value of the integral corresponds to supersonic flow on the average, while a positive value corresponds 
to a flow that is subsonic on the average. 

Relation (1.10) has a simple physical meaning. The average flow velocity over the profile exists in a 
hypersonic boundary layer. This being so, if the average velocity of sound is greater than the average 
flow velocity, then the flow in the boundary layer is subcritical and perturbations propagate upstream. 
Correspondingly, the flow will be supercritical if the average velocity is less than the velocity of sound. 

Formula (1.10) can be obtained from (1.11) by a simpler method. We change from the stationary system of 
coordinates X, T to a system X1, T moving upstream at constant velocity X1 = X + aT. 

In the moving system of coordinates the velocity in the boundary layer is equal to/31 = U + a and the difference 
G1 - uzl = G - uz does not change because it is proportional to the gas temperature. Substituting the expressions 
for U1 and G1 into (:t.1), we obtain (1.10) with U1, G1 in place of U, G. 

According to the above definitions 

a = ( 0 ~  / O X ) ( i ~ / O T ) - ~  = - d X  / d T  

A sound wave propagating upstream (downstream) corresponds to a > 0 (a < 0). The first integral in (1.10) 
converges when a < 0, since I a > 1 I. 

As an example, we shall present the dependence of the upstream and downstream wave propagation velocities 
on the temperature factor obtained when solving the self-similar system of equations obtained from (1.5). These 
functions are presented in Fig. 2. It can be seen that the velocity of upstream propagation of perturbations tends 
to zero as the temperature factor decreases, which means passing to supercritical conditions. 

Relation (1.10) can also be obtained for other forms of flow. An analysis of (1.7)--(1.9) shows that 
(1.10) also holds far generalized local conditions for the relation between the induced pressure and 
displacement thickness of the form P = F(A, dA/dX), including the conditions for flow in a plane-parallel 
channel (A = const). 

It should also be noted that the velocity profiles and enthalpies in (1.10) may also correspond to 
turbulent flows. 

2. The mutual irtfluence of viscous and inviscid flows studied above corresponds to a global (strong) 
interaction, which appears in the limit (1.1) over the whole length of the body. It is also known that in 
the limit as 

M~ ---> oo, M.'r I ~ 0 (2.1) 

where xl is the dimensionless boundary-layer thickness ('q = O(e0), e0 = p0u~//~0), strong interaction 
processes, which appear, for example, under the influence of base pressure variations or other causes, 

O,Z 
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~ +  

Fig. 2. 
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have a local character and are present at distances asymptotically small compared with the body length. 
Thus, in the limit (2.1), subject to the relations 

2 * - " ~ - - ~ ° / 2 e - ' A  = 0(1) gw -''> O, EogwM~ = O(1), zaV~v,~ *;w o 

(where co is the exponent in the exponential dependence of the viscosity on the temperature) the 
boundary-value problem describing the perturbed flow has the form [18, 19] 

DU o DU o DUo DP o D2Uo 
aro + V°- o + = Drg 

3U o 3Vo D3o DPo 
~Xo + ~ = o, eo = -  DXo + No DXo 

Xo-~ -*o, Uo(Xo,Yo,ro)=Vo 

Yo ~.O, Uo(Xo,Yo,ro)= Yo + Do(Xo,ro)+O(1) 

_ to -3 ) - ~  (2.2) 
Po - Ap(2aogwwoM** (7 - I)-' 

X 0 = (x - 1)(2 3 a~g~O-2)eo3M---3 (7 - !) -3 )¼ 

Yo = y(2a3g~(2+°))£05M~*l ( 7 "  1) -I )¼ 

U o = u(2 -I aog(w2+'~)£oM~( 7 - I))-¼ 

/ dp)(2 aog w £0 M~ (7 - 1) -3)¼ No = (d,~l 3 5 (o)-2) -3 -7 

where the parameter a0 is proportional to the friction stress in the boundary layer in front of the 
interaction domain (a0 = eo(Du/Oy)w). 

If we change to the new variables 

Xo , Yo , 7o -~ no ( Xo , ro ), ro , To 

in the boundary-value problem (2.2), then, after some reductions we can obtain the following 
expression 

(Of~0 ~-i 
N,--,,,o+,, 

DK~ 0 N l ' 

' 

I1=7o (al+Uo) 2' a':t,"SX-o'-o)t,-b'7-~-o) 
In the case of small amplitude perturbations, when a 1 + U 0 ~ a 1 + Y0, we have al = -1 /No.  

3. Consider the system of characteristics and subcharacteristics for all the functions appearing in the 
boundary-value problem (1.5). If the pressure P(X, 7") is assumed to be given in this problem, the change 
of variables (1.6) enables us to obtain the following relation after some reduction 

AoD~0 / D~= B 0, A o =diag(z2,z2,z),  dP o =coI(U,G,F),  z = O ~ I D Y  

According to the definition of a characteristic, from the condition det A0 = 0 one can obtain (D~ / 
DI05 = 0. It follows that the lines (X, T) = const normal to the surface are the characteristics of the 
system of equations for an unsteady boundary layer. These characteristics are related to diffusion 
processes occurring normal to the surface within the flow, which give rise to the propagation of 
perturbations at infinite velocity. 

To analyse the propagation of perturbations in planes parallel to the surface placed in the flow, which 
are described by first-order differential operators, it is necessary to consider the system of equations 
for an unsteady boundary layer without higher derivatives. 
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The replacement of variables (1.6) in the corresponding system of equations obtained from (1.5) yields 

AI0O t / 0~2 = & 

I1  ° cl  II" A I = 0 A* c t , ~ l  = G 

0 0 z F 

A, 0~ 0~ OF 0~ 0~  OU 
+ - ~ - + U o x  OX OY' cl = OX OY 

The characteristics corresponding to this problem or the subcharacteristics of the original problem can 
be determined from the condition 

A*20~ / 0Y = 0 (3.1) 

The analysis of an analogue of this relation derived for incompressible flow [2] enables us to determine 
the zones of dependence and influence. It turned out that the local zone of influence on the flow in 
the neighbourhood of the line (X1,/'1) = const is bounded by surfaces whose projections onto the plane 
Y = 0 are determined by the maximum and minimum values of the derivative d X / d T  = U(X1, Y, 7"1). 

We will consider the boundary-value problem (1.5) describing the flow in an unsteady boundary layer 
under strong interaction conditions. Changing to the variables (1.6) and using (1.9) to determine the 
derivative OP/Of~, we find that 

II A* 0 0 c 2 0 A* 0 c 3 
A 2 = 

0 0 Z 0 

0 0 0 c 4 

X ( y - l )  O~ 
c2 = 27P OX c3 

I 
U 

G 
(I) 2 = 

F 

P 

X(y-I)(G-U 2 ) Oil =XNOfl 
7P OT ' c4 OX 

The relation defining the subcharacteristics takes the form 

N 0 n  0 ~ ( 0 f ~  0~  0F 0 f~ )2=0  (3.2) 
-ff -ff -ff+u0  ox or; 

where the additional term as compared to (3.1) corresponds to gas-dynamical wave processes. 
The relations presented above and the zones of influence and dependence determined from them 

must be taken into account both when formulating boundary-value problems for the system of equations 
of an unsteady boundary layer under strong interaction conditions and when constructing the 
corresponding difference schemes. Formula (3.2) can be extended to the case of a three-dimensional 
unsteady interacting boundary layer. 
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